Wiener Upper and Lower Sum of P_{n}^{r} - Tree

S. Rubanraj, ${ }^{1}$ P. Rajkumar ${ }^{2}$
${ }^{1}$ Department of Mathematics, St. Joseph's College (Autonomous), Trichy, Tamilnadu, India
${ }^{2}$ Department of Mathematics, Srimad Andavan Arts and Science College, T.V. Koil, Trichy Email : ruban946@gmail.com, journalrajkumar@gmail.com

Abstract

Given a simple connected undirected tree T, the Wiener index $\mathrm{W}(\mathrm{T})$ of T is defined as half the sum of the distances of all pairs of vertices of T. In practice, T corresponds to what is known as the molecular graph of an organic compound. We obtain the Wiener Lower Sum W ${ }^{\mathrm{L}}(\mathrm{T})$ and Wiener Upper Sum $W^{U}(L)$ of an arbitrary $\mathrm{P}_{\mathrm{n}}^{\mathrm{r}}$ - tree

Keywords: $\quad \mathrm{P}_{\mathrm{n}}^{\mathrm{r}}$ - Tree, Wiener Lower Sum - Upper sum

$$
\text { of } P_{n}^{r} \text { - Tree }
$$

I. INTRODUCTION

Given the structure of an organic compound, the corresponding (molecular) graph is obtained by replacing the atoms by vertices and covalent bonds by edges (double and triple bonds also correspond to single edges unless specified otherwise). The Wiener index is one of the oldest molecular-graph based structure-descriptors, first proposed by the Chemist Harold Wiener [7] as an aid to determining the boiling point of paraffins. The study of Wiener index is one of the current areas of research in Mathematical Chemistry [5, 8]. There are good correlations between Wiener index of molecular graphs and the Physico-Chemical properties of the underlying organic compounds.

II. PRELIMINARIES

A Tree is a connected graph without cycles. A connected graph without cycles is called acyclic graph or a forest. A path tree P_{n} is a connected acyclic graph with the vertex set $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \ldots \mathrm{u}_{\mathrm{n}}\right\}$ and edge set $\mathrm{E}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1} / 1 \leq \mathrm{i}<\right.$ n\}.
Example

Figure - (i) Path Tree P_{n}
A F-tree is a graph obtained from a path graph, $\mathrm{n} \geq 3$ by appending two pendent edges one to an end vertex and the other to vertex adjacent to the end vertex [9]. Let F_{n} be a F tree with n vertices. Let $\mathrm{V}\left(\mathrm{F}_{\mathrm{n}}\right)=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}, \mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ and $E\left(F_{n}\right)=\left\{u_{i} u_{i+1} ; 1 \leq I<n\right\} \cup\left\{u_{n} v_{1}, u_{n-1} v_{2}\right\}$ be respectively vertex set and edge set of F_{n}.

A E-tree is a graph obtained from a path graph, $\mathrm{n} \geq 3$ vertices by appending three pendent edges, first edge to an end vertex, second edge to last but one end vertex and third edge to last but two end vertices [9]. Let E_{n} be the E -tree with n vertices, let
$\mathrm{V}\left(\mathrm{E}_{\mathrm{n}}\right)=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ and $\quad \mathrm{E}\left(\mathrm{E}_{\mathrm{n}}\right)=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1} ; 1 \leq \mathrm{i}\right.$ $<\mathrm{n}\} \cup\left\{\mathrm{u}_{\mathrm{n}} \mathrm{v}_{1}, \mathrm{u}_{\mathrm{n}-1} \mathrm{v}_{2}, \mathrm{u}_{\mathrm{n}-2} \mathrm{v}_{3}\right\}$ be respectively vertex set and edge set of E_{n}.
Example

Figure - (ii) F_{3}-Tree
Example

Figure - (ii) E_{4}-Tree
Given P_{n} is a path tree, let $P_{n}{ }^{r}$ tree be obtained by appending r pendant edges, $\quad 1<\mathrm{r}<\mathrm{n}$ first edge to an end vertex, second edge to last but one end vertex and third edge to last but two end vertex and so on [9]. Let $\mathrm{P}_{\mathrm{n}}{ }^{\mathrm{r}}$ be a tree with n vertices and r pendent vertices. Let $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}{ }^{\mathrm{r}}\right)=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \mathrm{u}_{\mathrm{n}}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots \mathrm{v}_{\mathrm{r}}\right\}$ and $E\left(P_{n}{ }^{r}\right)=\left\{u_{i} u_{i+1} ; \quad 1 \leq i<n\right\} \cup\left\{u_{n} v_{1}, u_{n-1} v_{2}, \ldots u_{n-r+1} v_{r}\right\}$ be respectively the vertex set and the edge set of $P_{n}{ }^{r}$.
Example

Figure - (iii) $P_{n}{ }^{\mathrm{r}}$ Tree

A. Definition

Let $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G})$) be a connected undirected graph, any two vertices u, v of $\mathrm{V}(\mathrm{G}), \delta(\mathrm{u}, \mathrm{v})$ denotes the minimum distance between u and v. Then the Wiener Lower Sum $W^{L}(G)$ of the graph is defined by

$$
\mathrm{W}^{\mathrm{L}}(\mathrm{G})=\frac{1}{2} \sum_{u, v \in V(G)} \delta(u, v)
$$

where $\delta(u, v)=\min d(u, v)$
B. Definition

Let $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$ be a connected undirected graph, any two vertices u, v of $V(G), \Delta(u, v)$ denotes the maximum distance between u and v. Then the Wiener Upper Sum $W^{U}(G)$ of the graph is defined by

$$
\mathrm{W}^{\mathrm{L}}(\mathrm{G})=\frac{1}{2} \sum_{u, v \in V(G)} \Delta(u, v)
$$

where $\Delta(\mathrm{u}, \mathrm{v})=\max \mathrm{d}(\mathrm{u}, \mathrm{v})$
Example

Figure - (iv) Graph

$$
\begin{aligned}
\mathrm{W}^{\mathrm{L}}(\mathrm{G})= & 1+1+1+2+2+2+1+1+ \\
& 3+1+3+1+2+2+4 \\
= & 27
\end{aligned}
$$

$\begin{aligned} \mathrm{W}^{\mathrm{U}}(\mathrm{G})= & 3+3+2+4+4+3+3+1+ \\ & 4+3+4+1+4+4+5 \\ = & 48\end{aligned}$
Our notation and terminologies are as in [1].

III. WIENER LOWER SUM OF THE $\mathrm{P}_{\mathrm{N}}{ }^{R}$ - TREE

A. Theorem

The Wiener Lower Sum of a $\mathrm{P}_{\mathrm{n}}^{\mathrm{r}}$-tree is $\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}^{\mathrm{r}}\right)=$
$\frac{n\left(n^{2}-1\right)+3 r^{3}-3(n-2) r^{2}+3(n-1)(n+3) r}{6}$
Proof
Let P_{n} be a path tree with n vertices then the Wiener Lower Sum of P_{n} is

$$
\begin{aligned}
\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}\right) & ={ }^{n+1} C_{3} \\
\text { ie) } \quad \mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}\right) & =\frac{n\left(n^{2}-1\right)}{6}
\end{aligned}
$$

Adding one pendant edge $\mathrm{u}_{\mathrm{n}} \mathrm{v}_{1}$ to the end vertex then the Wiener Lower Sum is
$\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}{ }^{1}\right)=\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}\right)+\sum \delta\left(\mathrm{v}_{1}, \mathrm{u}_{\mathrm{i}}\right)$,
where

$$
1 \leq \mathrm{i} \leq \mathrm{n}
$$

$\delta\left(\mathrm{v}_{1}, \mathrm{u}_{\mathrm{i}}\right)$ - minimum distance between vertices v_{1} and u_{i}

$$
\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}{ }^{1}\right)=\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}\right)+\frac{n(n+1)}{2}
$$

Again adding another pendant edge $\mathrm{u}_{\mathrm{n}-1} \mathrm{v}_{2}$ to the last but one end vertex then the Wiener Lower Sum is

$$
\begin{aligned}
\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}{ }^{2}\right)=\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}{ }^{1}\right) & +\sum \delta\left(\mathrm{v}_{2}, \mathrm{u}_{\mathrm{i}}\right) \\
& +\sum \delta\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)
\end{aligned}
$$

where
$1 \leq \mathrm{i} \leq \mathrm{n}$,
$\delta\left(\mathrm{v}_{2}, \mathrm{u}_{\mathrm{i}}\right)$ - minimum distance between vertex v_{2} to all the vertices of $P_{n}{ }^{1}$
$\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}{ }^{2}\right)=\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}{ }^{1}\right)+\frac{(n-1) n}{2}+2+3$
Also, again adding one more pendant edge $\mathrm{u}_{\mathrm{n}-2} \mathrm{v}_{3}$ to the last but two end vertices then the Wiener Lower Sum is

$$
\begin{aligned}
\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}{ }^{3}\right)=\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}^{2}\right) & +\sum \delta\left(\mathrm{v}_{3}, \mathrm{u}_{\mathrm{i}}\right) \\
& +\sum \delta\left(\mathrm{v}_{3}, \mathrm{v}_{\mathrm{k}}\right)
\end{aligned}
$$

where
$1 \leq \mathrm{i} \leq \mathrm{n}$ and $1 \leq \mathrm{k}<3$
$\delta\left(v_{3}, u_{i}\right)$ - minimum distance between vertex v_{3} to all the vertices of $\mathrm{P}_{\mathrm{n}}{ }^{2}$

$$
\begin{aligned}
\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}{ }^{3}\right)=\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}{ }^{2}\right) & +\frac{(n-2)(n-1)}{2} \\
& +(2+3)+(3+4)
\end{aligned}
$$

Continue the process of adding pendent edge until $1<r<n$ then the Wiener Lower Sum of $\mathrm{P}_{\mathrm{n}}{ }^{\mathrm{r}}$ is
$\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}{ }^{\mathrm{r}}\right)=\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}{ }^{\mathrm{r}-1}\right)+\sum \delta\left(\mathrm{v}_{\mathrm{r}}, \mathrm{u}_{\mathrm{i}}\right)+\sum \delta\left(\mathrm{v}_{\mathrm{r}}, \mathrm{v}_{\mathrm{k}}\right)$
where
$1 \leq \mathrm{i} \leq \mathrm{n}$, and $1 \leq \mathrm{k}<\mathrm{r}$, Distance between vertex v_{r} to all the vertices of $\mathrm{P}_{\mathrm{n}}^{\mathrm{r}-1}$

$$
\begin{aligned}
\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}{ }^{\mathrm{r}}\right)= & \mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}{ }^{\mathrm{r}-1}\right)+\frac{(n-r+1)(n-r+2)}{2} \\
& \quad+\sum(2+3+\ldots \mathrm{r} \text { terms }) \\
& +\sum(3+4+\ldots \mathrm{r} \text { terms }) \\
= & \frac{n\left(n^{2}-1\right)}{6} \\
+ & \frac{r^{3}-3(n+1) r^{2}+\left(3 n^{2}+6 n+2\right) r}{6} \\
+ & \frac{r(r+1)(r+2)}{6}-r \\
+ & \frac{(r+1)(r+2)(r+3)}{6}-(3 r+1)
\end{aligned}
$$

$W^{L}\left(P_{n}{ }^{r}\right)=$

$$
\frac{n\left(n^{2}-1\right)+3 r^{3}-3(n-2) r^{2}+3(n-1)(n+3) r}{6}
$$

B. Corollary

If $\mathrm{r}=1$ then the Wiener Lower Sum of $\mathrm{P}_{\mathrm{n}}{ }^{1}-$ tree is
$\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}{ }^{1}\right)=\frac{n\left(n^{2}-1\right)}{6}+\frac{n(n+1)}{2}$
C. Corollary

If $r=2$ then the Wiener Lower Sum of $P_{n}{ }^{2}-$ tree is
$\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}{ }^{2}\right)=\frac{n^{3}+6 n^{2}-n+30}{6}$
D. Corollary

If $r=3$ then the Wiener Lower Sum of $\mathrm{P}_{\mathrm{n}}{ }^{3}$ - tree is
$\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}{ }^{2}\right)=\frac{n^{3}+9 n^{2}-10 n+108}{6}$
Properties:

- The Wiener Lower Sum of $P_{n}{ }^{1}$-tree same as the Wiener Lower Sum of Path tree $\mathrm{P}_{\mathrm{n}+1}$
- ie) $\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}}{ }^{1}\right)=\mathrm{W}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{n}+1}\right)$
$={ }^{n+2} C_{3}$
- The Wiener Lower Sum of $\mathrm{P}_{\mathrm{n}}{ }^{2}$-tree is same as the Wiener Lower Sum of F-Tree
ie) $W^{L}\left(P_{n}{ }^{2}\right)=W^{L}\left(F_{n}\right)$
- The Wiener Lower Sum of $\mathrm{P}_{\mathrm{n}}{ }^{3}$-tree is same as the Wiener Lower Sum of E-Tree ie) $W^{L}\left(P_{n}{ }^{3}\right)=W^{L}\left(E_{n}\right)$
- In any tree the Wiener Lower Sum and Wiener Upper Sum are equal, since there is only one path between any pair of vertices in a tre
ie) $W^{L}\left(P_{n}{ }^{r}\right)=W^{U}\left(P_{n}{ }^{r}\right)$

IV. PROGRAM

```
/*Wiener Lower Sum of P Pr ' - Tree*/
#include<stdio.h>
#include<conio.h>
void main()
    {
    int i,j,k,n,s=0,r,c;
    clrscr();
    printf("\nNo of Vertices in G :N - \t");
    scanf("%d",&n);
    printf("\nNo of Pendent in G:r - \t");
    scanf("%d",&r);
    for(i=1;i<n;i++)
        {
            for(j=i;j<n;j++)
            s=s+i;
        }
    for(i=1,c=1;i<=r;i++,c=1)
        {
            for(j=i;j<=n;j++,c++)
            s=s+c;
        }
    for(i=2,c=2;i<=r;i++,c=2)
        {
        for(j=1;j<i;j++,c++)
            s=s+c;
        }
    for(i=2,c=3;i<=r;i++,c=3)
        {
            for(j=1;j<i;j++,c++)
```

```
        s=s+c;
        }
    printf("\nWL(Pn) = \t%d",s);
    getch();
}
```

Output
No of Vertices in G : N - 5
No of Pendent in G: r-3
$\mathrm{WL}(\mathrm{Pn})=68$

V. CONCLUSION

The Wiener Lower and Upper Sum of $\mathrm{P}_{\mathrm{n}}^{\mathrm{r}}$-Tree are useful for systems like radar tracking, remote control, communication networks and radio-astronomy etc. Estimation of the Wiener Lower Sum and the Upper sum for other graph or tree is under investigation

REFERENCES

[1] R. Balakrishnan and K. Ranganathan, "A Text book of Graph Theory", Springer, New York, 2000
[2] A.A. Dobrynin, R. Entringer, and I. Gutman, Wiener Index of Trees: Theory and Applications, Acta appl. Math. 66 (2001), 211-249
[3] A.A. Dobrynin, I. Gutman, S.Klavzar and P. Zigert, Wiener Index of Hexagonal Systems, Acta appl. Math. 72 (2002), 247-294
[4] E. Estrada and E. Uriarte, Recent Advances on the Role of Topological Indices in drug Discovery Research, Cur.Med.Chem. 8 (2001), 1573 1588
[5] I. Gutman and O. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986
[6] M. Miller and J. Siran, Moore Graphs and Beyond: A Survey of the Degree/Diameter Problem, The Elec. J. Combin. DS14 (2005), 1-61
[7] H. Wiener, Structural Determination of Paraffin Boiling Points, J. Amer. Chem. Soc. 69 (1947), 17-20
[8] L. Xn and X. Guo, Catacondensed Hexagonal Systems with Large Wiener Numbers, MATCH Commun. Math. Comput. Chem. 55 (2006), 137-158
[9] Wiener Index of F-Tree and E-Tree, S. Rubanraj, P. Rajkumar, International Conference in Stella Maris Colege at Chennai. Pg 216-217, 2012
[10] [Bruce E. Sagan, Yeong-Nan Yeh, "The Wiener Polynomial of a Graph", MI 48824-1027, U.S.A.

